
 

 
 BME6163- Advanced embedded Systems  Page | 1 

 

AVR BIT TWIDDLING 
INTRODUCTION 

Often when programming in a microcontroller (or on any computer, for that matter), the ability to 
manipulate individual bits will become useful or even necessary. Here are some situations where bit math 
can be helpful: 

• Saving memory by packing up to 8 true/false data values in a single byte. 
• Turning on/off individual bits in a control register or hardware port register. 

1. BITWISE AND 
The bitwise AND operator in C++ is a single ampersand, &, used between two other integer expressions. 
Bitwise AND operates on each bit position of the surrounding expressions independently, according to this 
rule: if both input bits are 1, the resulting output is 1, otherwise the output is 0. Another way of expressing this 
is: 

    0 & 0 == 0 
    0 & 1 == 0 
    1 & 0 == 0 
    1 & 1 == 1 

In Arduino, the type int is a 16-bit value, so using & between two int expressions causes 16 simultaneous AND 
operations to occur. In a code fragment like: 

    int a =  92;    // in binary: 0000000001011100 
    int b = 101;    // in binary: 0000000001100101 
    int c = a & b;  // result:    0000000001000100, or 68 in decimal. 

Each of the 16 bits in a and b are processed by using the bitwise AND, and all 16 resulting bits are stored 
in c, resulting in the value 01000100 in binary, which is 68 in decimal. 
One of the most common uses of bitwise AND is to select a particular bit (or bits) from an integer value, 
often called masking. For example, if you wanted to access the least significant bit in a variable x, and store 
the bit in another variable y, you could use the following code: 

    int x = 5;       // binary: 101 
    int y = x & 1;   // now y == 1 
    x = 4;           // binary: 100 
    y = x & 1;       // now y == 0 
2. BITWISE OR 

The bitwise OR operator in C++ is the vertical bar symbol, |. Like the & operator, | operates independently 
each bit in its two surrounding integer expressions, but what it does is different (of course). The bitwise OR of 
two bits is 1 if either or both of the input bits is 1, otherwise it is 0. In other words: 

    0 | 0 == 0 
    0 | 1 == 1 
    1 | 0 == 1 
    1 | 1 == 1 

Here is an example of the bitwise OR used in a snippet of C++ code: 
    int a =  92;    // in binary: 0000000001011100 
    int b = 101;    // in binary: 0000000001100101 
    int c = a | b;  // result:    0000000001111101, or 125 in decimal. 

Bitwise OR is often used to make sure that a given bit is turned on (set to 1) in a given expression. For 
example, to copy the bits from a into b, while making sure the lowest bit is set to 1, use the following code: b 
= a | 1; 

3. BITWISE XOR 
There is a somewhat unusual operator in C++ called bitwise exclusive OR, also known as bitwise XOR. (In 
English this is usually pronounced "eks-or".) The bitwise XOR operator is written using the caret symbol ^. This 
operator is similar to the bitwise OR operator |, except that it evaluates to 1 for a given position when 
exactly one of the input bits for that position is 1. If both are 0 or both are 1, the XOR operator evaluates to 
0.  

    0 ^ 0 == 0 
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    0 ^ 1 == 1 
    1 ^ 0 == 1 
    1 ^ 1 == 0 

Another way to look at bitwise XOR is that each bit in the result is a 1 if the input bits are different, or 0 if they 
are the same. Here is a simple code example: 

    int x = 12;     // binary: 1100 
    int y = 10;     // binary: 1010 
    int z = x ^ y;  // binary: 0110, or decimal 6 

The ^ operator is often used to toggle (i.e. change from 0 to 1, or 1 to 0) some of the bits in an integer 
expression while leaving others alone. For example: 

    y = x ^ 1;   // toggle the lowest bit in x, and store the result in y. 
4. BITWISE NOT 

The bitwise NOT operator in C++ is the tilde character ~. Unlike & and |, the bitwise NOT operator is applied 
to a single operand to its right. Bitwise NOT changes each bit to its opposite: 0 becomes 1, and 1 becomes 
0. For example: 

    int a = 103;    // binary:  0000000001100111 
    int b = ~a;     // binary:  1111111110011000 = -104 

You might be surprised to see a negative number like -104 as the result of this operation. This is because the 
highest bit in an int variable is the so-called sign bit. If the highest bit is 1, the number is interpreted as 
negative. This encoding of positive and negative numbers is referred to as two's complement.  
As an aside, it is interesting to note that for any integer x, ~x is the same as -x-1. At times, the sign bit in a 
signed integer expression can cause some unwanted surprises, as we shall see later. 

5. BIT SHIFT OPERATORS 
There are two bit shift operators in C++: the left shift operator << and the right shiftoperator >>. These 
operators cause the bits in the left operand to be shifted left or right by the number of positions specified by 
the right operand. For example: 

    int a = 5;        // binary: 0000000000000101 
    int b = a << 3;   // binary: 0000000000101000, or 40 in decimal 
    int c = b >> 3;   // binary: 0000000000000101, or back to 5 like we started with 

When you shift a value x by y bits (x << y), the leftmost y bits in x are lost, literally shifted out of existence: 
    int a = 5;        // binary: 0000000000000101 
    int b = a << 14;  // binary: 0100000000000000 - the first 1 in 101 was discarded 

If you are certain that none of the ones in a value are being shifted into oblivion, a simple way to think of 
the left-shift operator is that it multiplies the left operand by 2 raised to the right operand power.  
When you shift x right by y bits (x >> y), and the highest bit in x is a 1, the behavior depends on the exact 
data type of x. If x is of type int, the highest bit is the sign bit, determining whether x is negative or not, as we 
have discussed above. In that case, the sign bit is copied into lower bits, for esoteric historical reasons: 

    int x = -16;     // binary: 1111111111110000 
    int y = x >> 3;  // binary: 1111111111111110 

This behavior, called sign extension, is often not the behavior you want. Instead, you may wish zeros to be 
shifted in from the left. It turns out that the right shift rules are different for unsigned int expressions, so you 
can use a typecast to suppress ones being copied from the left: 

    int x = -16;               // binary: 1111111111110000 
    int y = unsigned(x) >> 3;  // binary: 0001111111111110 

If you are careful to avoid sign extension, you can use the right-shift operator >> as a way to divide by 
powers of 2. For example: 

    int x = 1000; 
    int y = x >> 3;   // integer division of 1000 by 8, causing y = 125. 
6. ASSIGNMENT OPERATORS 
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Often in programming, you want to operate on the value of a variable x and store the modified value back 
into x. In most programming languages, for example, you can increase the value of a variable x by 7 using 
the following code: 

    x = x + 7;    // increase x by 7 
Because this kind of thing occurs so frequently in programming, C++ provides a shorthand notation in the 
form of specialized assignment operators. The above code fragment can be written more concisely as: 

    x += 7;    // increase x by 7 
It turns out that bitwise AND, bitwise OR, left shift, and right shift, all have shorthand assignment operators. 
Here is an example: 

    int x = 1;  // binary: 0000000000000001 
    x <<= 3;    // binary: 0000000000001000 
    x |= 3;     // binary: 0000000000001011 - because 3 is 11 in binary 
    x &= 1;     // binary: 0000000000000001 
    x ^= 4;     // binary: 0000000000000101 - toggle using binary mask 100 
    x ^= 4;     // binary: 0000000000000001 - toggle with mask 100 again 

There is no shorthand assignment operator for the bitwise NOT operator ~; if you want to toggle all the bits 
in x, you need to do this: 

    x = ~x;    // toggle all bits in x and store back in x 
7. BITWISE OPERATORS VS. BOOLEAN OPERATORS 

It is very easy to confuse the bitwise operators in C++ with the boolean operators. For instance, the bitwise 
AND operator & is not the same as the boolean AND operator &&, for two reasons: 

They don't calculate numbers the same way. Bitwise & operates independently on each bit in its 
operands, whereas && converts both of its operands to a boolean value (true==1 or false==0), then 
returns either a single true or false value. For example, 4 & 2 == 0, because 4 is 100 in binary and 2 is 
010 in binary, and none of the bits are 1 in both integers. However, 4 && 2 == true, and truenumerically 
is equal to 1. This is because 4 is not 0, and 2 is not 0, so both are considered as boolean true values. 
Bitwise operators always evaluate both of their operands, whereas boolean operators use so-
calledshort-cut evaluation. This matters only if the operands have side-effects, such as causing output 
to occur or modifying the value of something else in memory.  
8. BIT TWIDDLING WITH AVR GCC COMPILER 

The AVR GCC compiler complies with the standard ANSI C specification.  

8.1. Setting Bit Values: 
Bit shifting is so common in AVR programming that there’s even a macro defined that gets included with 
io.h: it’s called _BV() and stands for “bit value.” The _BV() macro is just our bit-shift roll in disguise. 
In fact, it’s even defined as:  #define _BV(bit) (1 << (bit)) 
Many times you would like to set the voltage high for only a single pin of a port, and to do that you create 
what is called a ‘bit mask’, which is a binary number that has single 1-bit in the location corresponding to the 
pin you want to set, and all the rest of the bits are zero. You then use this number with a bitwise logical operator 
to finish the task. To create such a number, you would use the command: 
_BV(PXn)       // Where X is the port letter, and n is the pin number. For example, suppose you would 

like to make pin 2 on PORTA to be an output. You therefore need a bit mask with a 1 in 
bit number 2 location. The corresponding bit mask is easily built by the command: 
_BV(PA2) 

8.2. Setting the port’s data direction (input or output) on an ATmega: 
DDRX = 0x00;  // Clears all the bits in the PORTx register, which makes all the associated pins to be 

inputs (keep in mind there are only ports A, B, C, and D on the ATmega328), so you can 
read various signals from things such as switches, sensors, or for analog to digital 
conversion, etc. (by default all pins are set to input, but you should always set them to 
make sure anyway.) 

DDRX = 0xFF;  // Sets all the bits in the PORTx register, which makes all the associated pins to be 
outputs (keep in mind there are only ports A,B,C, and D on the ATmega328), so you 
can control devices, such as motors, LED’s, speakers, etc., pretty much anything you 
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would want the microcontroller to control (keep in mind that the ATmega cannot 
source much current, so you will probably need to use a transistor between the 
microcontroller and whatever you are trying to control if it needs more than 10 mA of 
current). 

8.3. Initializing Port Values: 
PORTX = 0xFF; // Clears all the bits in the PORTx register, and assuming that the pins are outputs, will 

make all the pins in PORTx go high (as mentioned in the section on Hex values above). 
So for example, PORTA = 0xFF; would set all pins in port A to on/high/1/5V, which would 
be the same as writing: PORTA = 0b11111111; Keep in mind that the right-most bit 
corresponds to pin 0 on PORTA in this example. 

PORTX = 0x00; // Clears all bits in the PORTx register and makes all pins in PORTx go low (as mentioned 
in the section on Hex values above). So for example, PORTB = 0x00; would clear all bits 
in the PORTB register and make all pins in PORTB go off/low/0/0V. This would be the 
same as writing: PORTB = 0b00000000; 

8.4. Bitwise Logic: 
PORTX |= 0xF0;  // Method for setting bits. Performs a bitwise OR operation with the current bit values of 

PORTX and the bit mask represented by the binary number, 0xF0. The result is that only 
pins 4-7 in PORTX are set high, and the other pins are not affected. Equivalent in ‘long 
hand’ would be: PORTX = PORTX | 0xF0;  

PORTX &= ~0x01;   // Method for clearing bits. Performs a bitwise AND operation with the current bit values 
of PORTX and the bit mask represented by the binary number, ~(0b00000001) or 
0b11111110. The result is that pin 0 is set low (referred to as ‘cleared’), regardless of 
what was there before. In this example, only pin 0 is cleared, and the state of the other 
pins are not affected. Equivalent in ‘long hand’ would be PORTX = PORTX & ~0x01; 

PORTX ^= 0x02; // Method for toggling bits. Performs a bitwise XOR operation with the current bit values 
of PORTX and the bit mask represented by the binary number, 0x02. The result is that 
pin 1 is ‘toggled’ between the off and on states. Think of this operation like a light switch. 
Each time the statement is executed, it changes the state to be the opposite of what 
it was previously. Similar to the prior statements, this method of toggling only affects the 
bits in the locations where there are ones in the bit mask hex value. ‘Long hand’ would 
be  
PORTX = PORTX ^ 0x02; 

The methods shown above are what you need to do to set up and control all the functions of the 
microcontroller.  
For the purpose of class, the following are three important bit-twiddling operations.  

Operation Implementation in C Implication 
Set a bit PORTB |= (1<<PB1) Bit PB1 is set to 1 (other pins are left unchanged) 
Clear bit PORTB &= ~(1<<PB1) Bit PB1 is set to 0 (other pins are left unchanged) 
Toggle a bit PORTB ^= (1<<PB1) If Bit PB1 was 1, it is toggled to 0. Otherwise, it is set to 1 (other 

pins are left unchanged) 
Read a value 
bit 

uint8_t bit = PORTB &        
(1<< PB1) 
 

Read and put the value of bit PB1 of PORTB into the variable 
bit. This is used to read switches. 

Please note that it is possible to set (or clear or toggle) multiple bits of a port. For example, the following 
code snippet clears bit PB0 and PB1of PORTB 

PORTB &= ~((1<<PB0)|(1<<PB1)); 
You may notice that It’s “hardcore” to do the bit shifting and negation stuff by hand, and this course’s code 
is also written in that style because I think it’s good to understand what’s going on under the “hood”. 
However, if you aren’t just like me, you can also define some macros to do the same thing, and this can 
make your code more easily readable. If you’d like to take this path, these will do the trick: 
 
#define BIT (bit) (1<<(bit)) // bit position 
#define SET_BIT (port,bit) (port |=BIT(bit)) // set a bit of a port 
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#define CLEAR_BIT(port,bit) (port &= ~BIT(bit))  // clear a bit of a port 
#define TOGGLE_BIT(port,bit) (port^= BIT(bit))  // Toggle a bit of a port 

8.5. Registers 
To effectively and efficiently program microcontrollers, one needs to learn how to manipulate individual bits 
in registers, the special memory locations that the microcontroller uses to control and carry out its 
operations. The three registers that one must deal with for Input/Output (IO) operations with an ATmega 
microcontroller are:  

• Data Direction (DDRx),  
• Data (PORTx), and  
• Port Input Pins (PINx).  

[The ‘x’ represents the letter enumeration scheme for the associated ports. In the particular case of the 
ATmega328, x could be B, C, or D]. Each of these three registers is 8-bits (1 byte) wide. 

Register Comments 
DDRx Controls data direction: writing a 1 to the associated bit location makes the 

corresponding pin to be an OUTPUT; writing a 0 makes the pin to be an INPUT. 
PORTx For a pin configured as an OUTPUT, the PORTx register provides the way to control the 

digital voltage of the pin: writing a 1 to the associated bit location drives the pin to 
logic HIGH; writing a 0 drives the pin to logic LOW. 
For a pin configured as an INPUT, the PORTx register provides the way to control the 
pullup resistor for the pin: writing a 1 to the associated bit turns the pullup resistor on; 
writing a 0 turns the pullup resistor off. 

PINx Contains the almost current ‘snapshot’ of the digital state of the pins in the 
associated port. This is the register used to ‘read’ the digital state of a pin.  

 
 

8.6. Working with bits in registers – bit masking 
The technique to access or change individual bits in registers takes some getting used to. The big idea 
underlying the technique is that when we work with a register, we always have to handle all 8 bits of the 
register together – there is no direct way to work on a single bit level. Consequently, we will use bitwise 
logical operators and bit masks to ‘drill down’ to an individual bit or groups of bits. A bit mask is a construct 
of 8 bits that is used in much the same way that a painter uses masking tape to keep sections of a surface 
from getting painted. 
As explained in the previous section, you can use the _BV(n) macro to create a bit mask with a ‘1’ in the bit 
position corresponding to the value of n. The macro for _BV(n) is a #define: 

#define _BV(n)  (1<<(n)) 
which indicates the more direct way of building bit mask: using the bit shift left operator, << . 
To determine if a particular bit in a register is set, use a bit mask with a bit in the position of interest and 
perform a bitwise AND between the 8 bits in the register and the bit mask. If the resulting value is not zero, 
the bit is set, else the bit is clear. For example, to check if pin 5 of PORTD is at logic HIGH, use a bit mask with 
a ‘1’ in the location for bit 5, _BV(5) or (1 << 5) and bitwise AND together with the PIND register contents. The 
table below illustrates what is happening, supposing bit 5 is set in PIND. (The ‘Xs’ indicate ‘don’t care’ what 
the values are: it doesn’t matter if they are ‘1’ or ‘0’). Go column by column doing a bitwise AND operation 
between the bit in the PIND register and the bit in the bit mask. The last row in the table is the result. 

bit 7 6 5 4 3 2 1 0 
PIND X X 1 X X X X X 
(1 << 5) 
(this is the bit mask) 

0 0 1 0 0 0 0 0 

PIND & (1 << 5) 0 0 1 0 0 0 0 0 
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So, if you wanted to take a particular action if bit PD5 was set, the following test would accomplish the 
selection: 

if( PIND & (1 << PD5) ) 
{ 
 // do stuff… ; 
} 
else 
{ 
 // do other stuff… ; 
} 

Note that if bit PD5 in the PIND register were clear, the value of the result from PIND & (1 << 5) would be zero. 

9. PUTTING IT ALL TOGETHER 
Now we start exploring how we can combine the various bitwise operators to perform 
useful tasks using C++ syntax in the Arduino environment. 
 
/* 
 * ReadingSwitch.c 
 * Created: 2/22/2015 11:19:17 AM 
 * Modified 3/7/2021 
 * Processor: ATmega168 
 * Compiler:  AVR/GNU C Compiler 
 * Author: Kizito NKURIKIYEYEZU 
 * File Version: 0.3 
 * Required File: None 
 * Objectives: Turn ON a switch at a press of a button 
 * Hardware design: 
  - LED connected to PB1  
  - Switch (in pull-up high) connected to PB1 
 */  
 

 

 
#include <avr/io.h> 
#define PRESSED 0 
#define NOT_PRESSED 1 
#define LED_PIN PB1 
#define SWITCH_PIN PB0 
int main(void) 
{ 
    PORTB &= ~(1<<SWITCH_PIN); // Make sure we're in the input mode 
  // PORTB |= (1 << PB0); // initialize pull-up resistor on our input pin 
    DDRB |= (1<<LED_PIN); // Set PB1 an output 
     // Turn off the LED 
    PORTB |= (1 << LED_PIN); 
 
   while (1)  
   { 
                // If PB0 is not pressed 
  if ((PINB & (1 << SWITCH_PIN)) == NOT_PRESSED ) 
  { 
   // Turn off the Led 
   PORTB |= (1<<LED_PIN); // Set PB1 to HIGH 
  } 
  else // If PB0 is pressed 
  { 
   // Turn on the led 
   PORTB &= ~(1<<LED_PIN); // Set PB1 to LOW 
  } 
   } 
 return 0; 
} 

  


